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SUMMARY

This report discusses the work partially supported under NASA

Contract NAS 8-29662, "Segregation Effects During Solidification

in Weightless Melts." The contract covers the period from July 5,

1973 to July 4, 1974.

During the contract period, the generalized problem of determin-

ing the temperature and solute concentration profiles during direc-

tional solidification of binary alloys with surface evaporation has

been mathematically formulated. Realistic initial and boundary

conditions have been defined, and a computer program has been de-

veloped and checked out.

The program computes the positions of two moving (evaporation

and solidification) boundaries and their velocities of movement,

and also the temperature and solute concentration profiles in the

semi-infinite material body at selected instants of time.

The program has the following unique features:

* Two moving boundaries are involved, i.e.,

the evaporative boundary and freezing

boundary

* Surface evaporation, and its related ef-

fects such as material loss, evaporative

segregation, and surface cooling due to

the heat of evaporation, have been con-

sidered

* Surface temperature is realistically de-

termined by the combined effect of heat

radiation, evaporative cooling, and

thermal diffusion
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* Material parameters such as solid and liquid

densities, specific heats, thermal conductivi-

ties, mass diffusivities, and latent heat of

fusion or evaporation, can all vary with both

the temperature and composition

* Realistic phase diagrams involving curved

liquidus and solidus lines are used

Our computer simulation work on solidification clearly shows

that constitutional supercooling readily occurs and within-melt

nucleation must then happen, particularly with reduced effective

liquid mass transfer under zero-gravity conditions. Such results

enabled us to explain and correlate some perplexing space solidi-

fication phenomena observed on Skylab, e.g., E. McKannan's weld

(M551) and Prof. Adams' braze (M552) results (see Monthly Progress

Reports Nos. 10 and 11). Detailed and quantitative application of

the results of this computer program, however, still awaits the

gathering of pertinent crystal growth data. A final report is ex-

pected to be written after these data are gathered and correlated.
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INTRODUCTION

Space processing is moving closer to reality. Bigger, better,

and more uniform single crystals of important semiconductors and

welds or brazes of improved properties have already been made in

space, as reported in the Third Space Processing Symposium at

Marshall Space Flight Center. Although processing of structural

materials may certainly have a profit potential in the long range,

it appears that the high cost per pound of single-crystal elec-

tronic and optical materials makes these materials the most de-

sirable contenders for immediate profitable returns from space

processing. A selected single crystal study is, therefore, highly

desirable to help us understand the segregation effects during

solidification in weightless melts.

Important tools for understanding these segregation effects

are analytic solutions or computer programs that simulate or pre-

dict what actually happens during space manufacturing. Such solu-

tions and programs, furthermore, are probably necessary in space

processing and other experiments where available time and experi-

mental facilities are limited, the cost per sample or experiment

is very high, and yet only a limited total number of tests or test

samples can be conducted.

Theoretical predictions often greatly save time while compu-

ter simulation saves cost. Specifically, analytic solutions and

computer programs allow us to answer many questions during the

planning or execution of space experiments on material solidifica-

tion, such as learning

* What phenomena are most important and what other

phenomena are negligible
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* Which influences are favorable to our understand-

ing of weightless solidification and which are not

* What conditions lead to optimal combination of

the favorable influences or elimination of the

unfavorable ones

* What sample and processing conditions should be

used

* What is the best way to analyze the resultant

samples for understanding a particular phenomenon

or influence

* How to save time and money -- that is, how to

maximize scientific return

We have developed a number of analytic solutions relating to

solidification and evaporation (Refs. 1-3). Several important com-
puter programs have also been developed. Some of these solutions

and programs were developed under our Contract NAS 8-27891, and

they are already proving useful in correlating actual experimental

results (Refs. 4 and 5).

These analytic solutions and computer programs are, however,

still in their early stages of development. The physical models

involved are very simple and require considerable improvements to
be used for other applications. It is, therefore, an important

objective of this contract to refine and improve these models and
the resultant analytic solutions and computer programs.

These refined solutions and programs are more widely useful,
have greater predictive value, and provide more accurate results.
Such accuracies are absolutely necessary to separate the rather
subtle zero-gravity effects on solidification, in the presence of
noise due to other unavoidable or unanticipated but ever-present
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miscellaneous effects. As a result of this continued work, more

efficient space experiments and greater scientific returns appear

possible. More meaningful solidification experiments and fuller

utilization of the unique space environment may also result.

The predicted results of our refined solutions and programs

should, of course, first be checked with selected experiments.

Another objective of this contract is, therefore, to design unique

experiments to correlate the numerical results to actual solidifi-

cation processes. This work is yet to be reported.

Review of Previous Contract

Under our NASA Contract NAS 8-27891, "Segregation Effects Dur-

ing Solidification in Weightless Melts" (Ref. 3), two types of melt

segregation effects were studied: evaporative segregation, or

segregation due to surface evaporation, and freezing segregation,

or segregation due to liquid-solid phase transformation.

These segregation effects are closely related. In fact, evapo-

rative segregation always precedes freezing segregation to some de-

gree and must often be studied prior to performing meaningful solidi-

fication experiments. This is particularly true since evaporation

may cause the melt composition, at least at the critical surface

regions or layers, to be affected manyfold, often within seconds,

so that at the surface region or layer the melting point and other

thermophysical properties, nucleation characteristics, base for

undercooling, and critical velocity to avoid constitutional super-

cooling, may be completely unexpected.

To predict the segregation effects of solidification time and

temperature and to correlate these predictions with actual experi-

mental data, "normal evaporation equations" were developed (Refs. 1,

4-6). An evaporative congruent temperature (or equi-evaporative
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temperature) was then defined and listed for various binary or

ternary alloys. Knowing these congruent temperatures and the

solute and solvent evaporating rates, one can predict the type

(solute depletion or enrichment) and magnitude of compositional

or constitutional changes on the critical melt surface. One ap-

plication of this unique temperature is to explain, predict, or

plan "anomalous" evaporative or constitutional melting (on cooling)

or solidification (on heating) experiments. We then computed for

a simple model the reactive jetting forces die to surface evapora-

tion and, in particular, showed that these forces can be very sub-

stantial on a differentially heated sample and may completely

destroy the unique zero-gravity environment in space manufacturing

(Ref. 7). In addition, these jetting forces may initiate surface

deformation and vibration or other fluid disturbances, and may even

produce some convection currents not normally anticipated. These

studies also showed which sample materials are preferable, which

should be avoided, and what impurities are harmful in producing ex-

cessive jetting or effective as stabilizing influences. The rela-

tionship between normal evaporation and normal freezing was then

considered. Finally, applications of evaporation to space manufac-

turing concerning material loss and dimensional control, composi-

tional changes, evaporative purification, surface cooling, mate-

rials standards, and freezing data interpretation were briefly de-

scribed.

In the area of segregation due to solidification, we explained

in some detail the normal freezing process and its successful use

in the semiconductor industry. Various constitutional diagrams

demonstrated the desirability of using nonconstant segregation co-

efficient techniques in metallurgical studies. We then stated the

basic normal freezing differential equation, together with its
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solutions for cases where the liquidus and solidus are quadratic,

cubic, high-degree polynomial, and exponential functions of the

melt temperature. The meaning of constant segregation coefficient

was discussed, together with the associated errors due to curva-

tures of the liquidus and solidus lines and the best value of

constant segregation coefficient for a given solidification ex-

periment. Numerical methods for computing the normal freezing

behavior were then given. Finally, as an example, the steady

state solidification of the Ni-Sn system under conditions of

limited liquid diffusion and nonconstant segregation coefficients

was described. This system was studied in the M553 experiment on

Skylab.
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IMPORTANCE OF EVAPORATION

Evaporation is important in space melting and solidification

for the following reasons:

Significant evaporation of alloy components

always occurs at high temperatures in space

vacuum environments

* High-temperature evaporation of alloys is gen-

erally a neglected area of systematic research.

Yet, unless the complete evaporative segregation

behavior is understood and analyzed, solidifica-

tion and its related segregation effects may not

be properly studied because of ill-defined ini-

tial conditions. Before the liquid alloy can be

controllably solidified or even melted, there is

invariably some surface evaporation to cause

changes in composition, freezing temperature,

supercooling characteristics, nucleation and

growth morphology conditions, and the like

* Controlled space evaporation probably most

closely meets the requirements of our model of

normal evaporation. We may thus be able to ob-

tain material purity or evaporation standards,

thermal properties, or even such basic thermo-

dynamic properties as heat of evaporation, ac-

tivity coefficients, and sticking coefficients

that are difficult or impossible to obtain on

earth

* FAGs BLANKi NOT rFIU"9
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* Evaporation is a much simpler process than freez-

ing, since the former does not involve such com-

plicated phenomena as nucleation, phase transforma-

tion, and constitutional or nonconstitutional

supercooling. Thus, in normal evaporation for

specific geometries or alloy systems, we may

ideally isolate and investigate such other phe-

nomena as heat conduction or radiation, liquid

or solid diffusion, fluid dynamics, and convec-

tion currents. Exact knowledge of these phenomena

is necessary to understand solidification

* Evaporation causes surface cooling due to the

heat of evaporation. This evaporative cooling

effect is particularly important in low-melting

materials (Ref. 8)

* Different rates of evaporation at various sur-

face regions give rise to unbalanced forces and

momenta that may produce erratic or unwanted

accelerations, surface distortions and vibra-

tions, exceedingly large "equivalent gravities,"

and possibly new types of powerful convection

currents in zero-gravity conditions

* Evaporation may cause the surface composition

of certain unwanted or unsuspected impurities

to be increased a thousandfold or millionfold

within seconds so that the layer's melting

point and other thermophysical properties,

nucleation characteristics, base for under-

cooling, and critical velocity to avoid con-

stitutional supercooling may be completely
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unexpected. In fact, anomalous "constitutional"

or evaporative melting on cooling, or solidifica-

tion on heating, is possible because of surface

evaporation. In addition, very large artificial

gravities (e.g., 10 g), strong fluid disturbances,

or even new and significant convection currents may

be produced from surface evaporation. These phenom-

ena have been observed in the M553 movies, according

to Dr. Martin Tobin of Westinghouse Co., Pa.

The much greater evaporative segregation effects, if unac-

counted for, would almost certainly conceal any minor or subtle

zero-gravity effects, particularly in the presence of other unknown

or uncontrolled effects. Definitive space solidification work

should probably, therefore, be preceded by an evaporative compati-

bility study of the sample materials and their possible associated

impurities. In fact, evaporation is almost certain to be very im-
portant or so overwhelming that the effect of zero-gravity or

freezing segregation may be masked or even reversed. A freely

suspended molten drop in space may, for example, have its surface

solute concentration greatly enriched (as much as a millionfold),

by neglected and undetectable trace impurities within seconds of

its deployment. We are then dealing at the critical surface layer
with a completely new and unanticipated alloy having an entirely

different composition, melting point, surface tension, thermophysi-
cal properties, latent heat of fusion, undercooling and nucleation

characteristics, growth morphology, and the like.

From this we can also see that any analytical, numerical, or

experimental study on solidification may yield completely unex-

pected or irrelevant results if the important and ever-present

evaporation phenomena is not adequately taken care of. This is

11



particularly true in the study of nucleation, undercooling, and

space manufacturing. Another important aspect of the present con-

tractual work is to incorporate this generally neglected evapora-

tion phenomena to define the exact initial and boundary conditions

before and during the alloy solidification process.

12



COMPUTER PROGRAM WITHOUT SURFACE EVAPORATION AND RADIATION

Solidification, even in one-g, is a complicated process in-

volving a multitude of interrelated phenomena such as mass and

heat transfer, phase change, and fluid motion. Comprehensive re-

views on solidification have been given, for example, by Chalmers

(Ref. 9), Tiller (Ref. 10), Christian (Ref. 11), and Li (Ref. 12).

Solidification in zero-g is still very complicated. Here,

gravitational force is negligibly small, but other effects as a

result become important. For example, surface tension often

plays a dominant role in determining the sample shape, processing

technique and the resulting contamination level of the processed

samples. Evaporation is another ever-present, complicating or

dominating factor, but one that may be used to advantage when

understood. Neglected, or improperly controlled evaporation may

drastically change sample surface composition, fluid motion, equiva-

lent gravities, nucleation, and undercooling characteristics as

previously described. The previous program, under Contract

NAS 8-27891, however, does not deal with evaporation.

Mathematical Definition of Solidification Problem

To understand thoroughly solute segregation either from com-

bined evaporation and solidification, or in single-crystal growth,

one requires a complete characterization of the (mass) diffusion

and temperature fields in the solid crystal and remaining melt.

The zero-gravity effect on the solidification may be overshadowed

by other effects invariably present (such as evaporation) in any

such growth process - a condition necessitating that such charac-

terization be accurately defined., Unfortunately, the coupled par-

tial differential equations for the diffusion and temperature

13



fields are generally not solvable. Although special case solutions
have been given for some types of usually physically nonsatisfying,
two-phase Stefan problems, for the general case solution we must
resort to numerical computations. Existing numerical methods are
always subject to such unrealistic assumptions as constancy of
interfacial velocity, temperature or temperature gradients, segre-
gation coefficients, diffusion constants, and other material thermo-
physical properties.

Under NAS 8-27891, a number of computer programs were de-
veloped to study the unidirectional solidification of a binary
alloy. These programs employ analytical and numerical methods.
The analytic program is based on some closed-form solutions of a
simple model and gives results for our numerical program to com-
pare. The model for the analytic program deals with a binary
alloy at a constant temperature and concentration throughout the
initial liquid melt, with the surface temperature instantaneously
dropped below the liquidus temperature. The liquid-solid inter-
face temperature is assumed constant, and the concentrations of
the alloy at the interface are given by the phase diagram having
curved liquidus and solidus lines. In addition, the interface
boundary plane moves according to a square root law relative to
the solidification time. The program also allows the interface
temperature and interface boundary to vary from these fixed rules,
but in practice the variation is negligible and not above the com-
puter error level (Ref. 3).

Although covered in detail in the final report on NAS 8-27891,
the mathematical formulation of the model is presented below for
the sake of completeness.

We deal in unidirectional solidification with a liquid binary
alloy to be directionally solidified into two phases, liquid and

14



solid. We consider the liquid alloy to be semi-infinite with origi-

nal (at t = 0) temperature T and concentration C . Solidifi-
o o

cation occurs when the temperature at x = 0 is changed from T

to a lower value TI, either instantaneously or gradually, so

that TI  is below the temperature T2 at which the liquid mix-

ture at concentration C can be in equilibrium with a solid

phase. As solidification occurs, the solid phase grows and its

boundary is located at x = y(t), and the interface temperature

at this point is Ti(t). The partial differential equations de-

scribing the solidification process are the following:

2T 6T 2 C C
2 s s s s

a s  2 Ds  2 -- for 0 < x < y(t) (1)

2 2

2 T a2C aC
2 T 2

a - D;32C' 6C for y(t) < x < m (2)x2 6t a 2 t
6x 6x

where the variables T, C represent the temperature and concentra-

tion (of solute in solvent) and the subscripts a, s denote the

liquid and solid phases, respectively. The thermal and mass diffu-

sion coefficients as , a , Ds , D are assumed constant. The fol-

lowing conditions are usually assumed throughout:

(a) TA(x,O) = T and C(x,0) = C°

(b) T (m,t) = T0  and CA(o,t) = C°

(c) Ts(y(t),t) = T,(y(t),t) = T (t)

(d) Cs (Y(t),t) = fs(Ti(t))

15



(e) CI(y(t),t) = f(Ti(t))

)T sT
(f) pyy(t) = k s 5 - k - for x = y(t)

(g) fs(Ti(t)) - f (T (t)) y(t) = -- s

for x = y(t)

In many cases, -t is also ass

(h) y(t) =a -t.

Equation (a) describes the condition that the original mix-

ture is all liquid at temperature T and concentration C .

Equation (b) is a consequence of the semi-infinite nature of the

mixture so that at any time t, the portion near infinity is un-

changed. Equation (c) assumes that at the solid-liquid interface

plane there is an interface temperature Ti (t) and that both the
solid and liquid phases at x = y(t) have this temperature. There
is no discontinuity in temperature. Equations (d) and (e) state
that the concentrations of solid and liquid at the interface are
given by the solidus and liquidus curves, respectively, of the con-
stitutional diagram for the alloy. Equation (f) connects the de-
rivative of the moving boundary with the redistribution of tempera-
ture and Eq. (g) connects the same boundary with that of concentra-
tion. Equation (h) relates the position of the interface boundary
to the solidification time t.

The conditions on Ts (O,t) and Cs (O,t) are not fixed in
our discussion, and a number of alternatives are considered:

16



1. Ts (O,t) = TI(t) with Tl (t) equal to a constant for

all t;

2. linear, T (t) = T + t(T I - T )/s for t < s and

T (t) = TI for t > s;

3. exponential, T1 (t) = T1 + (To - TL) e- t / s so

T1 ( 0 ) = T and TI ( m) = TL'

For Cs(O,t) the conditions considered are Cs(O,t) = C1
usually taken Cs(T2) or at times a condition conserving mass

between 0 and w.

The two approaches we have pursued may be designated as ana-

lytic and numerical. The numerical approach can be applied to all

three conditions on temperature whereas the analytic approach holds

only the case of constant temperature instantaneously applied. A

variant of this analytic method to apply to linear varying tem-

perature has been investigated.

An analytic solution to the coupled partial differential equa-

tions (1) and (2) subject to the initial and boundary conditions

(a) through (g) has been given (Ref. 13). A numerical program has

been designed for the analytic solution.

These numerical programs developed under NAS 8-27891 are

based upon finite difference approximations of the partial and

ordinary derivatives and involve a variable spacing (for improved

computing efficiency). The programs have given acceptable results

and compared well with the reference analytic solution, where com-

parable. The basic physical properties such as densities, diffu-

sivities, specific heats, thermal conductivities, and heat of

fusion have been held to be constant, and independent of tempera-

tures and concentrations.
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COMPUTER PROGRAM DEVELOPED UNDER PRESENT CONTRACT

Under the present contract, we have extended the programs to

allow for reasonable variation of these physical properties. The

approach that has first been taken is to base the values of these

physical properties upon extrapolated values of temperature and

concentration, and then to determine the values of temperature and

concentration. The process is then repeated by re-evaluations of

the physical properties. Other modifications of our original pro-

gram are: 1) to store the physical properties for each of the

mesh points and to employ the appropriate quantities at each step,

and 2) to recheck the mass and heat diffusion equations to make

certain that the constancy of these properties is not assumed.

An additional major program modification has been the inclu-

sion of evaporation effects. This includes evaporation before

solidification that is mathematically identical to the problem of

simple solidification in binary alloys. After solidification

starts, significant evaporation may still exist. We then have to

deal with two moving (solid-gas and solid-liquid) boundaries

located at y(t) for evaporation and at z(t) for solidification,

as will be described.

Modification of the initial and boundary conditions a-h has

also been made to make the problem more physically meaningful. One

such modification is to include a surface heat radiative loss term

involving T4 . This term affects the convergence of the problem

and creates the need for different algorithms. As reported pre-

viously, (Ref. 14), the surface cooling due to evaporation is neg-

ligible for many metallic systems such as nickel and iron alloys,

or other higher melting materials, and has not been studied in de-

tail under this contract.

19



To obtain solutions for realistic boundary conditions and to

include the various mass transfer effects, numerical solutions of

the partial differential equations of heat and mass transfer are

required. We have again used the finite difference method to ob-

tain the numerical solution.

The boundary conditions for surface temperature include radia-

tion cooling as given by the Stefan-Boltzmann equation and also

include evaporative cooling for both components of the alloy.

-- -lt's la- &L hasL been smdetelr.umi g 4.t evaoratiLon rates.

At the interface it is assumed that the temperature and concentra-

tion relationships for each phase are given by the constitutional

diagram for the alloy. The temperature dependence of the thermal

and mass diffusion coefficients are allowed for each phase.

20



GENERALIZED SOLIDIFICATION WITH SURFACE EVAPORATION

Evaporative Solidification of.a Binary Alloy

Given a semi-infinite binary alloy melt, initially at concen-

tration Co  and temperature To , we consider the solidification

of the alloy due to surface heat loss by evaporation and radiation

(Fig. 1). There are two separate regimes to be considered. The

first is concerned with temperature and concentration variations

before solidification begins; the evaporation causes the original

liquid-vapor boundary to change. Thus, we have a moving boundary

problem. The second regime begins with the solidification which

introduces a boundary-between the freezing solid and remaining

liquid phases whose compositions, we assume, follow the phase

diagram, i.e., solidus and liquidus curve relations hold. Conse-

quently, after solidification begins, there are two moving bounda-

ries: one is the evaporative boundary and the other is the freez-

ing or solidification boundary.

1.0

o 0.1 _
Gas Solid Solid Liquid

C o

0

oo

0.001 Cd

Initially at 970 0 C at 0.01 Second

2121



Equations at the Evaporative Boundary

We denote the evaporative boundary as x = y(t) where

y(O) = 0. The evaporation rates in mol/m2/sec for pure solute

and solvent are, respectively (Ref. 15),

A -Bu/T
U = K 10 (MT) 2

A -1 I r

V = K 1 0 v v (MT )
e vs

-5
where K = 5.83 x 10 , M , M are molecular weights for solutee u v
and solvent atoms, Ts  is the evaporating surface temperature in

degree K, and Au , Bu, A, By are the evaporating constants for

solute and solvent, respectively. If pu and pv are the solute

and solvent densities, then

dy UM C VM (1 - C)

dt pu pv

where C is the concentration at the moving boundary.

The heat loss rate equation at the boundary due to radiation

and evaporation is given by

T= - T4 - UTuC - V (1 - C)

where E is emissivity coefficient, a the Stefan-Boltzmann con-

stant, and yu and 7v are specific heats for solute and solvent,

respectively.

The equation for the rate of concentration change is

C
= - (U - v)c
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Since the evaporative boundary is a moving one, and since both the

evaporation temperature T and solute concentration C are func-

tions of distance x = y(t) and time t, i.e., T = T(x,t) and
dT dC

C = C(x,t), the total derivatives dT and d- may be obtained

from the partials, i.e.,

dT 3T +(aT dy
dt 5t x dt

x=y

dC 2C )C d
dt =t x dt/

x=y

where -x and are evaluated at the moving boundaries.

dy dT dC
Given dt' dt, and t we can integrate for y, T, and C

for the moving boundary using a modified Euler method.

v = v + At --t)

t+At t

t+At t 2 t t+At

dv( i)

where is the value of the derivative at time t + At
dt

using the value v (i)  for v.

3T
To determine T at time t and t + At requires knowledge

ax
of the distribution of temperatures at both times. Those at time

t + At are initially approximated by an extrapolation and are cor-

rected using an approximated value of the temperature of the evap-

orating boundary with the heat diffusion difference equations.

Since the change in temperature at the boundary is greatest due to

the heat of evaporation, more iterations are applied to determine

23



it than to the determination of temperature distribution by means

of diffusion equations. Similar considerations hold for the de-
aC dC

termination of -x and --.
x dt

The computations of the position of the evaporation boundary

[y = y(t)], temperature (T), and solute concentration (C) at

this boundary constitute an initial value problem in ordinary dif-

ferential equations. Thus, given yo = 0, T = To, C = Co, at

time t = 0, and given also the equations for velocity of movement

of this boundary dy/dt, and rate of change of temperature and

solute concentration dT/dt, and dC/dt, we can determine for

selected times the values of y, T, and C. The method used is

an iterated Euler scheme:

Yn+l = Yn + (Yn + Yn+l)

where the initial value Yn+l is taken as y'. This scheme must

be connected to the problem of determining the temperature and

solute concentration distribution within the semi-infinite body

because the derivatives dy/dt, DT/dt, and dC/dt depend upon

these quantities. The first step is to determine a first approxi-

mation of the temperature and solute concentration by extrapola-

tion and then correct these values from the newly approximated

values of the boundary position and the temperature and concentra-

tion thereat.

Start of Solidification

To determine the time when solidification has begun, the

boundary temperature is compared with the temperature obtained by

the inverse function for the liquidus curve evaluated at the

boundary concentration. If the former is greater, then solidifica-

tion has not yet begun. If it is smaller, then solidification has

begun. In order to avoid an exact iterative procedure to determine

the instant of solidification and to follow it up by a starting

procedure for the first time interval thereafter, a simplified
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approach has been taken that introduces a small error in the evapo-

rative boundary and freezing boundary. By allowing the temperature

to be below the solidification temperature by a small amount and

by assuming that the temperatures at both boundaries are the same,

a starting value of x = z(t) of the freezing boundary is deter-

mined so that the loss in concentration due to solidification is

compensated by the gain in concentration at the liquidus. Given

the new temperature TI2 below the temperature at which solidifi-

cation begins, we compute CSS = FS(TI2) and CLL = FL(TI2), the

corresponding solid and liquid concentrations given by the phase

diagram. To determine DEL2 = Z12 - YI2, the distance between

the evaporative boundary and solid-liquid .interface, we assume

that the solid is entirely at concentration CSS, and the liquid

varies linearly from CLL to CC(II12), the concentration at the

first mesh point x(112) after the evaporative boundary. The

total concentration is to equal the concentration in the whole

regime had no solidification taken place. We assume it to be

CL2 computed at YI2 and to vary linearly to CC(II12) at

x(11 2). This yields the equation

CSS * DELZ + (CLL + CC(112))/2 (x(IIT2)- Y12 - DELZ)

=(CL2 + CC(II2))/2 (x(II2)- YI2)

Hence

DELZ* [CSS- (CLL+ CC(112)/2) ] (x(12) - YI2) (CL2 -CLL)/2

where

DELZ = (CLL- CL2)/2 (x(2)- YI2) (CLL+ CC(112)/2 - CSS)

Then

dz DELZ
ZI2 = YI2 + DELZ and dz DELZ

dt2 DELTS
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This enables us to begin the next time step with initial

values for y(ts), z(t d d T Y(t) = T z(ts) = TI2, and

C(y(ts)) = CSS, Cs(z(ts)) = CSS, C z(ts) = CLL.

The Two-Boundary Problem-Derivative Estimation

The equations at the freezing boundary are those given in

the Grumman Final Report RE-458 to Contract NAS 8-27891 (Ref. 3),

with the exception that the freezing boundary is now called

x = z(t) and not x = y(t) as in Eq. 49 c-g. At every time step

we must compute (in addition to the temperature and concentration

at the evaporation boundary) the temperature at the freezing bound-

ary. The concentrations are determined by the phase diagram. The

method we employ is that which determines T (the solidification
dz

temperature) and dt by means of Eq. (49) f,g. Having obtained
dz

- we obtain z(t) by means of a modified Euler method. Since

the Eq. (49) f,g required approximation for x)z,t and \ zt

we must develop techniques for these approximations appropriate to

various situations for mesh points. In addition, for the computa-
tion of d dT dCtion of dt --, and -- at the evaporative boundary, we alsodt' dt' dt

need (xyt and ()yt When there are two mesh points be-

tween y and z, then the techniques alluded to above are avail-
a2T

able. This involves determining 2 at both y and z and the
2 x2 C

same for -- When there is only one mesh point between y andx2

a2T
z, then -- at both points are the same. When there are no mesh

ax

points between y and z, then we can assume either that 2

is zero and hence = T() - T() or that
y x z z -y
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2T T T Y)z - yand= k -- and hence y 2 and
x2 x x y 2 x

1 + z 2 k) . The choice of k must be small so that

32 T  T 2 T
S= k 2 k x is negligible. Thus, since z-y is also

22T

very small this option is indistinguishable from 2 = 0. We
ax

have three cases: 1) no mesh points between two boundaries and we

s2T =T T 2) one mesh point between y andassume - = 0, (x) = (z)z'

62T
z when 2 is obtained from the three points and

x

N) T(z) - T(y) (z - y) 2T T(z) - T(y)
2_ 2 and =

x y z y 2 x2 x z Z y

(z - y) 2 T
2 2 ,  and 3) when two or more mesh points, say xi  and

S22 nxd

xi+I ,  are between y and z so that we can compute z-- and
2 e T T(xi) ' T(y)

separately and distinct. Then xTx y xi -

(xi- Y) .2 T(z) - T(xi+1 ) (z - xi+l) 2T) and z 2 2
2 x y z i+1 "2x z

In general, it is necessary to compute 2 and 2 in three
x2  x

ways, two ways indicated above for the solid regime and a third

for the liquid side of the freezing boundary. It is similarly
T e_

necessary to compute -x- and x in three ways.

Boundary and Mesh Points

When boundary points come close to mesh points, the computa-

tion of derivatives may be vitiated by closeness to mesh point.
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Therefore, tests are made to determine when such closeness occurs

as usually expressed in terms of a decimal fraction of the interval.

In that case, the reference point is moved to the next mesh point

and the values of T and C at the skipped mesh point are ob-

tained by linear interpolation. This interpolation depends on

which side of the solid-liquid interface the mesh point lies. For

the evaporative boundary similar considerations hold.

Solution for Remaining Points

The solution for the remaining points is obtained as in the

Final Report previously mentioned, pages 3-14 and 3-15 (Ref. 3). One

change is, however, necessary because the first mesh point (or

more) are no longer under consideration if the evaporative boundary

has passed them. The subroutine TRIST is used to solve for the re-

maining points. In this subroutine we compute the values of tem-

perature and concentration at intermediate mesh points when given

the values at the two extreme mesh points. We replace the values

at the mesh point to the left of the evaporative boundary by those

at the evaporative boundary point, before solving for the inter-

mediate points. This can be done without destroying any useful

information since that mesh point is no longer used in the compu-

tations. The subroutine TRIST does not depend upon equal spacing

or any regular spacing and therefore can accommodate this usage.

Convergence

The convergence problem is the crux of the program. Oscilla-

tion tends to cause the needed quantities to overflow. Thus, tests

must be made on all the quantities to contain them within reason-

able bounds. The subroutine MOTON is used to check the monotonicity

of these consecutive points. In addition, the temperature at the

evaporative boundary is necessarily less than the temperature at
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the freezing boundary. This condition is always imposed in the

program.

In addition, the solution for the solidification temperature

and freezing boundary derivative (especially the latter) involves

very rapidly.changing quantities. More iterations should, there-

fore, be expended in this part of the program. Fewer iterations

are needed for determining the evaporative boundary, and the tem-

perature and concentration at that boundary. The program allows

five iterations in the former for each of the latter. The number

of iterations of the latter is used in a manner analogous to that

described in Final Report RE-458 (Ref. 3).

An input quantity NIT (usually a multiple of 4) gives the

maximum number of iterations. When NIT/2 iterations occur and

convergence is not reached, the time step size is halved. This

process is continued until either convergence is attained or the

minimum step allowed by the program has been iterated NIT + 1

times. In this case the program may stop or continue on using the

nonconverged quantities. Very often these quantities are suffi-

ciently smooth so that convergence will occur on the next interval

and the program gives satisfactory results.

However, if the program proceeds with the minimum step and

the maximum number of iterations, the results may be spurious. In

case of overflow, there is no doubt of it. Otherwise the user

must look at results to decide whether he finds them reasonable.
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IMPROVED COMPUTER PROGRAM

The complete computer program for the generalized solidifica-

tion problem is listed herein (see appendix), together with a

glossary explaining the special names used in the program. This

computer program has the following unique features:

* Surface evaporation, and its related effects

such as material loss, evaporative segrega-

tion, and surface cooling due to the heat of

evaporation, have been considered

* Material parameters such as solid and liquid

densities, specific heats, thermal conductivi-

ties, mass diffusivities, and latent heat of

fusion or evaporation, are allowed to vary

with the temperature and composition

" Realistic phase diagrams involving curved

liquids and solidus lines are used

* Two moving boundaries are involved, i.e.,

the evaporative boundary and freezing

boundary

* Surface temperature is determined by the

combined effect of heat radiation, evapora-

tive cooling, and thermal diffusion

Use of Computer Program

The computer program works well if the following three input

program parameters are properly chosen: 1) time step size (DELT),

2) grid spacing (DELX), and 3) maximum iteration count (NIT).
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The solidification boundary is sensitive to the grid spacing.

This is because in passing through a mesh point, discontinuity in

the computation occurs for the following reasons. We compute

the derivatives in terms of the temperatures and concentrations

at the discrete mesh points. When one mesh point is dropped be-

cause solidification occurs near it, the derivative based on a

substituting new mesh point is discontinuous with that based on

the previous mesh point. Though this discontinuity can be reduced

by using a smaller time step size, it would be a self-defeating

strategy. An alternative is to accept the discontinuous results

as they occur, advantages being taken of the fact that the program

corrects itself. Although the derivative dz/dt is large when

the solid-liquid interface passes through a mesh point, it becomes

smaller thereafter thereby correcting the solidification boundary

position.

The frequency of this self-correction depends on the grid

spacing. Too small a grid spacing would cause too frequent self-

corrections. Too large a grid spacing, on the other hand, would

obscure the rapid temperature variations around the solidification

boundary. This indicates that a proper choice of the grid spacing

is required to achieve an optimal tradeoff between accuracy and

computing time. There is another tradeoff between the time step

size and maximum iteration count for optimal computing results.

Since each evaporation-solidification problem represents a

different and unique physical situation, each case must be dealt

with separately. However, based on our experience, the following

guidelines would be helpful:

The first consideration for the choice of the grid spacing

is the behavior of the evaporation boundary after solidification

begins. If the evaporation boundary is virtually stationary as
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compared to the solidification boundary, the grid spacing should

be chosen so that the evaporation boundary is within the first

mesh interval (between the first and second mesh points). If, on

the other hand, the evaporation boundary is moving at velocities

comparable to those of the solidification boundary, then the grid

spacing can be selected more freely. The major consideration in

this case is the relationship between the grid spacing and the

time step size. For a fixed time step size, the grid spacing

should be chosen so that at least four time intervals (of step

sizes) occur before the solidification boundary passes through a

mesh point.

In cases where the evaporation boundary is virtually sta-

tionary, one must experiment to determine an optimum time step

size in terms of accuracy and computing time. The. conditions of

the experiment are as follows. Set both the minimum time step

size (DELTM) and the time printing interval (DELP) to zero. Set-

ting the time printing interval to zero will cause the computer to

print out every computer time step. Setting the minimum time step

size to zero will not cause the program to cut back indefinitely

but will use, as the minimum, the time step size divided by 1024.

By examining the computed results, one can see at what time step

sizes the program is running. By examining the actual iteration

count (IT), one can see if the program is converging or not. If

not converging repeatedly, a smaller time step size is indicated.

If the program is converging most of the time, then the minimum

time step size can be set at the level of the most frequent time

step size and the actual iteration count re-examined to see if the

program still converges most of the time. For long runs, the time

printing interval must not be zero or small, but must be chosen in

consideration with the amount of the required output.
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To improve the computing time on long runs, one should con-

sider enlarging the grid spacing as suggested above as one of the

tradeoffs. In addition, one may change the maximum iteration

count upwards or downwards to also improve the computing time.

Our computer program has the capability for assuming equal or

unequal (doubling) mesh point spacings. Our experience, as indi-

cated in Tables 1-4, shows that the unequal spacing scheme gives

practically the same accuracy with far less computations as com-

pared with the equal spacing scheme. This may be due to the

rapidity at which the temperature declines at the evaporation

boundary. Other physical situations may give different results and

may indicate that the equal spacing scheme should be used.

The program input parameters consist of a set of integers IX,

IAM, NIT, IM, N, and NCN; and a set of real numbers DELX, DELT,

DELTM, DELP, TF, and S. IX is the maximum number of mesh points

to be used in the program. Present, IX 28. IAM is the spacing

option indicator. If IAM equals 0, the points of mesh are equally

spaced with grid spacing DELX. If IAM = 1, an unequal spacing is

indicated. The first two intervals are equal and set to DELX.

Thereafter, each interval is double the previous interval in spac-

ing. NIT is the maximum number of iterations as interpreted in

the context of halving the time step size. If the step is begun

at the minimum time step, the NIT is the maximum number of itera-

tions allowed. IM is the number of mesh points in actual use.

The input value of IM introduces the minimum number of mesh points

to be used. Thereafter additional mesh points are added as re-

quired by a substantial change in temperature at next to last mesh

point, that is, 1 degree below the initial temperature. IM is

increased until IM is equal to IX.
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TABLE 1 VARIATION OF TEMPERATURE ("C) AT EVAPORATIVE BOUNDARY
FOR VARIOUS COMPUTATION SCHEMES

Scheme I II III IV V

Grid 0.01 0.01 0.001 0.001 0.0001 cu

Spacing equal unequal equal unequal unequal

time, ms

0.2 966.5 966.5 966.5 966.5 966.5

0.6 959.4 959.4 959.4 959.4 959.5

1.4 945.7 945.7 945.7 945.7 945.8

1.8 938.9 938.9 938.9 938.9 939.0

2.0 935.5 935.5 935.5 935.5 935.6

2.05 934.7 934.7 934.7 934.7 N.C.

2.075 934.2 934.2 934.2 934.2 N.C.

2.0875 934.0 934.0 934.0 934.0 N.C.

2.09375 933.9 933.9 933.9 933.9 N.C.

2.1 933.8 933.8 933.8 933.8 933.9

2.1125 933.6 933.6 933.6 933.6 933.7*

2.1375 933.2 933.2 933.2 933.2 933.3*

2.1875 932.4 932.4 932.4 932.4* 932.5*

2.2875 930.8 930.8 930.8 930.8* 930.9*

2.4875 927.7 927.7 927.2 927.7* 927.7*

2.8875 921.5 921.5 921.5 921.5* 921.5*

3.6875 909.3 909.3 909.3 909.3* 909.3*

5.2875 885.8 885.8 885.8

Hand interpolations
N.C. not computed
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TABLE 2 VARIATION OF POSITION (1m) OF EVAPORATIVE BOUNDARY
WITH TIME FOR VARIOUS COMPUTATION SCHEMES

Scheme I II III IV V

Grid 0.01 0.01 0.001 0.001 0.0001 cm
Spacing equal unequal equal unequal unequal

time, ms

0.2 0.122 0.122 0.122 0.122 0.122

0.6 0.351 0.351 0.351 0.351 0.351

1.4 0.752 0.752 0.752 0.752 0.752

1.8 0.927 0.927 0.927 0.927 0.928

2.0 1.009 1.009 1.009 1.009 1.010

2.05 1.029 1.029 1.029 1.029 N.C.

2.075 1.039 1.039 1.039 1.039 N.C.

2.0875 1.044 1.044 1.044 1.044 N.C.

2.09375 1.046 1.046 1.047 1.047 N.C.

2.1 1.047 1.047 1.047 1.047 1.050

2.1875 1.048 1.048 1.048 1.048* 1.052

2.2875 1.049 1.049 1.049 1.048* 1.053

2.4875 1.051 1.051 1.051 1.050* 1.055

2.8875 1.055 1.055 1.055 1.054* 1.059

3.6875 1.061 1.061 1.062 1.061 1.066

5.2875 1.072 1.072 1.072 - -

Hand interpolations
N.C. not computed
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TABLE 3 VARIATION OF POSITION (4m) OF SOLID-LIQUID INTERFACE

Scheme I II III IV V

Grid 0.01 0.01 0.001 0.001 0.0001 cm
Spacing equal unequal equal unequal unequal

time, ms

0.21 0.205 0.204 0.109 0.109 0.106

0.24875 0.211 0.211 0.179 0.180 0.408

0.28875 0.229 0.229 0.350 0.350* 1.03

0.36875 0.283 0.283 0.866 0.860* 2.76

0.52875 0.429 0.429 2.291 N.C. N.C.

TABLE 4 VARIATION OF TEMPERATURE (oC) AT SOLID-LIQUID INTERFACE

Scheme I II III IV V

Grid 0.01 0.01 0.001 0.001 0.0001 cm
Spacing equal unequal equal unequal unequal

time, ms

0.21 933.8 933.8 933.8 933.8 933.9

0.24875 927.7 927.7 927.7 927.7* 927.9*

0.28875 924.5 921.4 921.5 921.4* 921.6*

0.36875 909.3 909.3 909.3 909.3* 909.4*

0.52875 885.8 885.8 885.8

Hand interpolations
N.C. not computed
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NONCN is a nonconvergence option. Failure to converge occa-

sionally is not necessarily an indication of unacceptable results.

Therefore, it is desirable to continue computations and examine

the results to see if they are acceptable. This is done by setting

NONCN to 1. If NONCN is set at 0, the nonconvergent results are

not printed unless called for by the print interval. If NONCN is

-1, the program stops on nonconvergent results.

The quantity DELX is the grid spacing. Equal spacing and

unequal double spacing both make use of this quantity as indicated

in the discussion of IAM. The quantity DELT is the maximum time

interval (step size) for computation. The quantity DELTM is the

input minimum time interval. The program uses as its actual mini-

mum the larger of the quantities DELT/1024 and DELTM. Thus, even

if DELTM is set at 0, the number of halving on cutting back the

time interval is at most 10 (210 = 1024). The program in its pre-

solidification phase starts with its actual time step DELTS set to

DELT/8 and allows it to build up to DELT by quick convergence.

On the other hand, near the beginning of solidification,

DELTS is allowed to cut back to as small as DELT/256 in order to

find an acceptable start of solidification. After solidification

has begun, then the restriction of DELTS is between DELTK and DELT.

If halving reduces DELTS below DELTK, it is set to DELTK. The

quantity DELP is the present interval. If DELP = 0, then every

time step is printed. TPR is the time for outputing results. TPR

is set originally to DELP and after printout is reset to TPR + DELP.

The program prints results if the time TIME1 at the end of the

time step equals or exceeds TPR. The program does not attempt to

set DELTS so that TPR = TIME1. This is only a slight inconve-

nience when the print interval is large as compared to DELTM. Gen-

erally, we would like DELTM to be set close to the most frequent
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DELTS provided that failure to converge does not ensue on a regular

basis. TF is the final time of program. This means that if TIMEL

equals or exceeds TF, no additional time steps are taken.

The decimal quantity S between 0 and 0.5 is used to de-

termine closeness to a mesh point. If the boundary point (either

evaporation or solidification) is such that it exceeds the point

that divided the mesh interval surrounding the boundary point in

the ratio (1-S)iS, then the mesh reference point for computation

is moved to the next mesh point. The introduction of S is to make

the transition due to passing a mesh point less abruptly discontinu-

ous. The best values of S are between 0.05 and 0.15. For com-

putations on the solid side of the solidification boundary, we con-

tinue to use the old mesh points until the boundary point passes

the point that divides the new mesh interval about the solidifica-

tion point in the ratio S/(l-S). This strategy causes a gradual

transition from one mesh point to another. The integers IIi, 112

are used as reference point indicators for the solid and liquid

sides, respectively. For the evaporation boundary, 113 is used to

indicate which points are used. 114 is used only to indicate the

first mesh point to the left of the evaporation boundary.

Typical Computer Input

The definitions of the various inputs. fed into the computer

are given in the Glossary of Program Parameters. Typical input

values are as follows:

IX = 28 = maximum number of mesh points

IAM = 1, unequal, doubled grid spacing

NIT = 20, maximum number of iterations

IM = 16, actual number of points in mesh

NONCN = 0, allowing the program to continue when non-
convergence occurs with no special printout
of these results.
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The alloy phase diagrams are determined from the five con-

stants ET, EA, EB, EC, and ED, which define the liquidus CQ and

solidus lines Cs as two functions of the temperature, T:

Cj(T) = ED x (ET - T)2 + EC x (ET - T2

Cs(T) = EB x (ET - T)2 + EA x (ET - T)

In our example of 10 mole percent (Co = 0.10) of antimony

in germanium initially uniform at 970 0C (To = 970)

ET = melting point of pure germanium = 956 0 C

EA = 0.128812 x 10-3

EB = -0.82218 x 10-7

EC = 0.466678 x 10-2

ED = -0.60466 x 10-5

The evaporation constants for the solvent and solute as de-

fined previously under "The Equation at the Evaporative Boundary"

are:

AU = A = 0.1115 x 102u
BU = B = 0.863 x 104

u
EMU = M = 0.2435 x 103

AV = A = 0.1171 x 102

BV = B = 0.1803 x 10
V

EMV = Mv = 0.726 x 102
-4

EK = K = 5.833 x 10e

The diffusion coefficient of the solute in solvent in the

solid and liquid states are, respectively
-6

DS = D5 = 0.10 x 106
-3

DL = D2 = 0.10 x 10
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The density p, and latent heat of evaporation, y, of the

pure solvent are, respectively,

RHO = p = 5.32

GAMMA = yv = 160

Corresponding values for pure solute are:

RHOU = p = 6.68

GAMMAU = yu = 39

The above give two derived quantities:

2
ALS = a = k /Pvc

2
ASS = a = ks/Pc

where

CEE = c = 0.740 x 10 = specific heat

The two input parameters in the surface radiation terms are:

EE = E = 0.55 = emissivity coefficient, and
-7

SIG = a = 0.136 x 10 = Stefan-Boltzmann constant.

Computer Output

The first line of computer outputs gives the program input

parameters IX, IAM, NIT, IM, and NONCN, which are defined pre-

viously and also in the "Glossary." The next two lines of computer

output give the phase diagram constants (ET, EA, EB, EC, and ED)

and evaporation constants (AU, BU, EMU, AV, BV, EMV, and EK), re-

spectively. The next printouts are for CEE, DS, DL, TO, CO, XKL,

RHO, GAMMA, RHOU, GAMMAU, EE, SIG, T2, and COO, where T2 is the

temperature when solidification begins for the melt of initial

solute concentration CO.
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The computed numbers are then outputed as follows:

IT = actual iteration count

IM = number of points in mesh

II = grid point reference for solid side of mesh

112 = grid point reference for liquid side of mesh

113 = grid point reference for evaporation boundary

114 = grid point reference for point after evaporation
boundary

These printouts are then followed by the computed values asso-

ciated with the evaporation boundary: time, location y, concen-

tration C, temperature T, extent of points X(IM), current

time interval DELTS, dy/dt DYDT1, dC/dt DCDT1, dT/dt DTDT1. If

solidification has not begun, then there is no information about

the solidification boundary. Otherwise, we have position of the

solidification boundary z computer language (ZII), solid solute

concentration Cs (CSl), liquid solute concentration CQ(CLl),

temperature T (TII), and rate of movement dz/dt (DZDTl). All

decimal outputs are five per line with excess going to the next

lines.

Representative Computed Results

The study of the effect of varying the grid spacing DELX on

the computed results is summarized in Tables 1 through 4. The

five cases considered are:

Case I: DELX = 0.01 cm with equal spacing

Case II: DELX = 0.01 cm with unequal spacing

Case III: DELX = 0.001 cm with equal spacing

Case IV: DELX = 0.001 cm with unequal spacing

Case V: DELX = 0.0001 cm with unequal spacing
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Tables 1 and 2 indicate the insensitivity of the evaporation

boundary and its temperature to grid spacing, provided that the

spacing is always larger than the evaporation boundary point.

Tables 3 and 4 involve solidification boundary and show that the

temperature is insensitive to DELX but that the solidification

boundary is quite sensitive to the choice of DELX. Thus, it is

important to use DELX sufficiently small so that the solidifica-

tion boundary movement is fully exhibited and not stunted by a

large grid spacing relative to which the boundary size is small.

The spacing affects the evaluation of the first and second temper-

ature partial derivatives with time which are larger in absolute

values for smaller spacings, due to more rapid temperature changes

near the boundaries.

The figures (Figs. 2-4), prepared from the computed results in

Tables 1-4, indicate the superiority of unequal over equal grid

spacing. For DELX = 0.01 cm, where the spacing is coarse, little

difference is found in the temperature distribution. For

DELX = 0.001 cm, there is greater difference between the two

because the equal spacing has limited the semi-infinite body to

27 (0.001 cm) and fixes the temperature at the end point to

9700C, thus not allowing the temperature to decline as rapidly as

it should. For DELX = 0.0001 cm, the equal spacing method could

not work at all because 27 (0.0001 cm) is too small a range to

define a semi-infinite body even for the small time constants under

consideration.

The second set of graphs, Fig. 3 (grid spacing DELX = 0.001),

shows wide disparity between equal and unequal spacing whereas the

first set of graphs (Fig. 2) (DELX = 0.01) shows good agreement.

The smaller DELX needs more points to simulate the semi-infinite,

one dimensional case and when restricted to IX = 28, fails to
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allow temperature away from the evaporating surface to decline

rapidly because it is artificially pegged at x = 28 (0.001) to

9700. The unequal spacing needs but six points to give equivalent

extension and, when given 10 or 11 points, can adequately span a

sufficient distance to simulate semi-infinity. At smaller

DELX (0.0001) one cannot even attempt to use equal spacing with-

out modifying the behavior at the last mesh point. For unequal

spacing, 16 points will adequately represent the semi-infinite body

for the times under consideration.

Checking Program

To check the program, GaAs single crystals will be grown

with controlled dopant type, dopant concentration, growth rate,

and temperature gradient, as shown in Table 5. The dopant con-

centration, carrier mobilities, defect contents, ... will be mea-

sured along several sections on each crystal. The results will be

statistically analyzed and presented in future reports.
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TABLE 5 GaAs CRYSTAL GROWTH SCHEDULE

Temperature
Crystal Growth Rate Gradient

No. Dopant Concentration in./hr oC/in.

1 Te 1 x 1017 0.16 8

2 Si 5 x 1018 0.22 8

3 Cr 5 x 1018 0.28 6

4 Si 5 x 1017 0.16 6

5 Zn 5 x 101 8  0.16 4

6 Cr 1 x 1018 0.16 10

7 Te 1 x 1018 0.22 6

8 Zn 1 x 10 1 8  0.28 8

9 Cr 5 x 1017 0.10 8

10 Si 1 x 1018 0.10 4

11 Si I x 1017 0.28 10

12 Zn 1 x 1017 0.10 6

13 Te 5 x 1017 0.28 4

14 Zn 5 x 1017 0.22 10

15 Cr 1 x 1017 0.22 4

16 Te 5 x 1018 0.10 10

17
18
19 To be grown after the results of above crystals

20 are analyzed.
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CONCLUSIONS

We have developed a computer simulation program to study the
phenomena of directional combined evaporation and solidification

in binary alloys. A realistic phase diagram involving curved

liquidus lines is used, and the program can be used for cases

where the solid and liquid material parameters (e.g., specific

heat, conductivity, diffusivity, ...) are functions of both tem-
perature and solute concentration. The program works well if one
follows the guidelines outlined in the report. The computed out-
put results include the locations and velocities of movement of
both the evaporation and solidification boundaries, and the tem-
perature and concentration profiles in the semi-infinite alloy
body at selected instants of time.
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APPENDIX I

IMPROVED COMPUTER PROGRAM
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FILE: BINCR6 FCRTRAN P1 G R U M M A N D A T A S Y S T E t

DIMENSION X(28),T(28),TT(28),C(28),CC(28), BIN00010
*TEM(10) ,A(84) BIN00020
NAMELIST /INVAR/CEE,DS,DL,TO,CO,XKL,RHO,GAMMA,RHOU,GAMMAU,EE,SIG BIN00030

*,ET,EA,EB,EC,ED,AU,BU,EMU,AV,EV,EMV,EK,IX 1N00040
D2 (X,FP,Y,G,Z,H)= ((H-G)/(Z-Y)-(F-G)/(X-Y))/(Z-X)*2. BIN0050
ABSi(X)=AMAX1(1.,ABS(X)) BIN00060
UE(V)=EK* (1).** (AU-BU/( 273.12+V))) /SQRT(EMU*(273.12+V)) BIN00070
VE(V)=EK*(1' .**(AV-BV/(273.12+V)))/SQRT(EMV*(273.12+V)) BIN00C80
FS(V)=(EB*(ET-V)+EA)*(ET-V) BIN00090
FL (V)= (ED* (ET-V)+EC)*(ET-V) IN00100
XCL(V) =ET-2. *V/(EC+SQRT ((EC) **2+4.* (ED)* (V))) BIN00 110
XCSL(V)=ET+2.*V/((EC-EA)+SQRT((EA-EG)**2+4.*(EB-ED)*V)) BIN00120
DFL (V) =- (2.*ED* (ET-V) +EC) BIN00130
1=1 BIN00140

IO=8 81N00150
READ(II,100) IX,IAM,NIT,IN,NONCN sIN00160

1l0 FORMAT (1615) BIN00170
NITHT=NIT/2 Bnni 80
NITQ=NITH/2 BIN00190
NITL=NITH+NITQ BIN00200

64 READ(II,101)ET,EA,EB,EC,ED BIN00.&10
AQUAN=- (EA-EC) **2/ (4. (EB-ED)) 8IN00220

101 FORMAT(7E!1 .0) 81N00230
READ(II, 1" 1) AUJ,BU, EMU, AV, EV,EM V,EK SIN00240
READ(II,lnl) CEE,DS,DL,TO,CO,XKL,RHO,GAMMA ,RHOU,GAMMAU,EE,SIG SIN00250
ALS=XKL/(RHO*CEE) BIN00260
YKS=1.1*XKL 81 0270
ASS=1.1*ALS/1.03 dIN00280
AS=SQT (ASS) BIN00290
AL=SQRT(ALS) I N00300
READ(II, 101) DELX,DELT,DELTM,DEI,TF,S 8IN 00310
DELTK=AMAX1(DELTM,DELT/1124.) BIN00320
T2=XCL (CC) 81N00330
COm=FL(T2) BIN00340

201 DO 1 I=1,IX BIN00350
IF(I-2) 2,3,4 81 00360

2 X(1)=0. BI00370
GO TO 1 1N00380

3 X(2)=DELX BIN00390
GO TO 1 81N00400

4 IF(IAM) 5,5,6 BINO8410
5 X (I) =X (I-1) +DELX BIN00420

GO TO 1 BIN00430
6 X(I)=X(I-1)+X(I-1) BIN00440
1 CONTINUE BIN00450

999 WRITE(IO,109)IX,IAM,NIT,IM, NONCN BIN00460
WRITE(IO,102)ET,EA,EB,EC,ED BIN00470
WRITE(IO,192)AU,B,EU,E,AV,BV,EVEK BIN00480
WRITE(IO,102)CEE,DS,DL,T0,C,XKL,RHO,GAMMA ,RHOU,GAMfAU,EE,SIG,T2,1BN00490

*CO" BIN00500
TPR=DELP BIN00510
RAT=l. BIN00520
TSI1=TO BIN00530
TI1=Tl BIN00540
CSL1=CO BIN00550
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FILE: BINCR6 FORTRAN P1 G R U M M A N D A T A S f S T E

YbNO0560
ZYI =. BIN00570
ZI1=2. 81N005680
111=2 1N0059U
112=2 BIN00600
D2TI32 dIN00b10
D2T23=. BIN0620
D2T43=. BIN06 3 0

D2T4=0* BIN00640
D2C3=O. 1IN 0C650
D2C4=1. BINOC660
D2C2=0. dIN00670
D2T1=. 818N00680
D2C1=. BIN00690
DTLDX=0. BINv0700
DTSDX=0. BIN00710
D2C5=1. BIN00720
D2T5=0. BIN00730
D2C6=0. BIN0740
D2T6=0. BIN00750
TIME =0. BIN00760

DCDX0=O. BIN00770

DTDXO=0. BIN00780

DELTS=DELT/8. BIN00790

TIME1=TIME+DELTS IN 00800
DO 1i I= 1,IM BIN00810

C(I)=CO BIN00820

CC(I)=cO BIN00830

TT(I)=TO B1N00840
I T(I)=TO BINO0850

IFL=O BIN00860

IPS=0 IN00870
III=II2 BIN00880

14 IT=0 BIN00890

IF(IFS.EQ.1)GO TO 199 8IN0090

IF(IFL) 11,11,23 BINO0900
11 Un=UE(T )  BIN00920

V=VE (TO) BIN00920

1F1~ 1BIN00930IFI=1 BINO940
199 IF(IFS.NE.)CSL1C=CS1 BIN00950

IF(IFS.EQ. 1) IFS=2 BIN00950
DYDTO=U *EMU* SL1/RHOU+VO*EMV* (1. -CSL1)/BHO BIN00960

HBn=-EE*SIG*(273. 12+TSI1)**4-U*GAMMAU*CSL1-VO*GAM
M A*( 1 .- CSL1) BIN00970

DCDTf=DCDXO*DYDTO-(Ul-V) *CSL1 BIN00980
DTDTI=DTDXn*DYDTO+HBn BIN00990

20 YI2=YI1+DELTS*DYDT C  BIN01000
TF(IFS.EQ.0)ZI2=YI2 BIN010

IF(IFS.NE.0) ZI2=ZI1+DELTS*DZDTI BINO 1020

IF(ZI2.GT.X(II2+1))ZI2=(X(II2)+YI2)/2. BIN01030
TSI2=TSI1+DELTS*DTDTO BIN01040
TI2=TSI2 BIN01060
CSL2=CSL1+DELTS*DCDTC BIN01060

IF(IFS.EQ. 0 ) CL2=CSL2 BIN01080
77 IF(IFS.EQ.0)GO TO 777 BIN01090

IF (IFL.GT.1)GO TO 877 BIN01100

IIT=l BIN 01100

oifNMg PAG19 19
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FILE: BINCR6 FOCRTRAN P1 G R U M M A N D A T A S Y S T E f

877 CS2=FS(TI2) BIN01110
CL2=FL(TI2) BIN01120

777 D2C2=D2(ZI2,CL2,X(I2),CC(II2),X(II2+1),CC (II2+1)) BIN01130
CC(II2)= (CC(II2)+C(II2)+.5*DELTS*(D2C1+D2C2)*DL )/2. 81N01140
CALL NOTON(X(II2),CC(II2),ZI2,CL2,X(II2+1),CC(II2+1)) BIN01150

IF(ZI2.LT. X(II2-1))CC(II2-1) =CC(II2) +(X(II2-1)-X(II2))* IN811160
*(CL2-CC(II2))/(ZI2-X(112)) 81N01170
IF(111-II3-1)83,87,84 U1N01180

87 XP=YI2 BIN01190
CP=CSL2 bIN01200
GO TO 184 BIN01210

84 XP=X(II1-2) 1lN01220
CP=CC(II1-2) 81N01230

184 D2C4=D2(XP,CP,X(II1-1),CC(IIl-1) ,ZI2,CS2) BIN01240
CC(II1-1)=C(II1-1)+.5*DELIS*(D2C3+D2C4)*DS 81N01250
CALL MOTON (X(II1-1),CC(II1-1),XP,CP,ZI2,CS2) BIN01260

83 IF(II2.EQ.II1.OR.ZI2.LT.K(II2-1)) GC TO 85 BIN01270
IF(II2-II3.GT.1)GO TO 185 81N01280
XP=YI2 8IN01290
CP=CSL2 BIN01300
GO TO 51 BIN01310

185 XP=X(II2-2) BIN01320
CP=CC(II2-2) 81E01330

51 CC(112-1)=CP+(X(II2-1) - XP)*(CS2 -CP)/ BIN01340
*(Z12 -XP) BIN01350

85 D2T2=D2(ZI2,TI2,X(II2),TT(II2),X(II2+1),TT(II2+1)) BIN01360
IF (D2T2.GT.0.)D2T2=0. BIN01370
TT(II2) = (TT (112)+T (112) +.5*DELTS*(2T1+D2T2)*ALS )/2. BIN01380
CALL MOTON(X(II2),TT(II2) ,ZI2,TI2,X(112+1) ,TT(II2+1)) BIN01390
IF (IFS.EQ.3)GO TO 485 BIN01400

485 IF(ZI2.LT.X(II112-1)) TT(II2-1)=TT(I112)+(X(II2-1)-X(II2))* BI01410
* (TI2-TT (II2))/ (ZI2-X(II2)) BIN01420
IF(II1-II3-i) 69,169,269 81N01430

169 TP=TSI2 BIN01440
XP=YI2 BI8101450
GO TO 16 BIN01460

269 TP=TT(II1-2) BIN01470
XP=X(II1-2) BIN01480

16 D2T4=D2(XP,TP,X(II1-1),TT(II1-1),ZI2,TI2) BIN01490
TT(II1-1)= T(II1-1)+.5*DELTS*(C2T3+L2T4) *ASS 81N01500
CALL MOTON(X(II1-1) ,TT(II1-1) ,XP,TP,ZI2,TI2) BIN01510

69 IF(II2.EQ.II1.OR.ZI2.LT.X(II2-1)) GC TO 86 8IN01520
52 IF (II2.LT.II3-1)GO TO 186 BIN01530

XP=YI2 BIN01540
TP=TSI2 BIN01550
GO TO 352 BIN01560

186 XP=X(II2-2) BIN01570
TP=TT(II2-2) BIN01580

352 TT(II2-1)=TP +(X(II2-1)-XP)*(TI2 -TP)/ BIN01590
*(ZI2 -XP) BIN01600

86 IF(IFS.EQ.0O)GO TO 299 BIN01610
DCLDX=(CL2-CC(II2))/(ZI2-X(II2)) BIN01620
IF (D2C2.GT.0.) DCLDX=DCLX-D2C2* (X (II2)-ZI2)/2. BIN01630
IF (D2C2.LT.0'.)D2C2=0. 8IN01640
DTLDX= (TI2-TT (112)) / (Z2-X (I112)) BI01650
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FILE: BINCR6 FORTRAN P1 G R U Mn A N D A T A S Y S T E M

IF (D2T2.LT.0.) DTLDX=DTLDX-.5*D22*(Xi(II2)-zI2) BIN01660
IF(II3.EQ.II1)GO TO 386 BIN01670
XP=X(I11-1) 8IN01680
TP=TT(II1-1) 81N01690
CP=CC(II 1-1) IN01700
GO TO 486 BIN01710

386 XP=YI2 urN01720
TP=TSI2 B1iN1730
CP=CSL2 81N01740
DCSDX=(CS2-CP)/(ZI2-XP) BIN01750
DTSDX= (TI2-TP)/(ZI2-XP) BIN01760
GO TO 686 BIN01770

486 DCSDX= (CP-CS2)/ (XP-ZI2) -D2C4*(XP-ZI2)/2. 81N01780
DTSDX= (TP-TI2)/(XP-ZI2) -D2T4*(XP-ZI) /2. BIN01790

686 DZDT=(DL*DCLDX-DS*DCSDX)/(CS2-CL2) BIN01800
DZDTT=(XKS*DTSDX-XKL*DT L DX)/ (RHC*GAM A) BIN01810

FSL=DZDT* (CS2-CL2)/DZDTT BIN01820
IF(FSL.GT.0..OR.FSL.LT.AQUAN )GO TO 772 BIN01830
TII=XCSL(FSL) BIN01840
GO TO 771 BIN01850

772 TII=ET BIN01860
771 COE1=XKS/(ZI2-XP) BIN01870

COE2=XKL/(X(II2) -ZI2) BIN01880
586 TI= (RHO*GAMMA*DZDT+COE1* (TP-D2T4*. 5* (XP-Z12) **2) +COE2* (IT (II2) -. 5 BIN01890

**D2T2* (X (II2)-ZI2)**2))/(COEl+COE2) BIN01900
773 IF (TI.LT.TSI2.AND.TI.LT.TII)TI=TII 3IN01910

IF (TI.LT.TSI2.OR.TI.GT.TT(II2+1))TI=TT(II2) BIN01920
IF (DZDT.LT.O..AND.DZDTT.GT.O.) DZDT=DZDTT BIN01930
IF(ABS(TI-TI2)-1.E-5*ABS1(TI+TI2)) 587,587,770 BIN01940

587 IF(ABS(DZDT-DZDT1)-1.E-3*ABS1(DZDT+DZDT1)) 298,298,770 BIN01950
770 TI2 = (TI+TI2)/2. BIN01960

IP (DZDT .LT.).)DZDT=DZDT1 BIN01970
DZDT1=(DZDT+DZDT1) /2. BIN01980
ZI2=ZI1+.5*DELTS* (DZDT1+DZDTO) BIN01990
IF(ZI2.GT.X(II2+1))ZI2=(X(II2)+YI2)/2. BIN02000
IIT=IIT+1 1IN02010
IF(IIT.GT.5) GO TO 298 BIN02020
GO TO 877 ' BIN02030

298 IF(TI.GT.TT(II2))TI=TT(II2) BIN02040
IF(TI.LT. TSI2) TI=TSI2 BIN02050
IF(IIl-II3-1)398,498,598 BIN02060

598 D2T6=D2(YI2,TSI2,X(II3),TT(II3),X(II3+1),TT(113+1)) BIN02070
D2C6=D2(YI2,CSL2,X(II3) ,CC(II3) ,X(II3+1) ,CC(II3+1)) BIN02080
DTDX1= (TSI2-TT (II3)) /(YI2-X (113)) -D2T6* (X (113) -YIz) /2. 8IN02090
DCDX1= (CSL2-CC (I13) )/(Y2-X (II3)) -D2C6*(X(113) -YI2) /2. BINO2100
GO TO 599 BINO2110

498 DTDX1=DTSDX+D2T4*(XP-ZI2) 8IN02120
DCDXl=DCSDI+D2C4*(XP-ZI2) BIN02130
D2T6=D2T4 BIN02140
D2C6=D2C4 BIN02150
GO TO 599 81N02160

398 DCDX1=DCSDX BIN02170
DTDX1=DTSDX BINO2180
GO TO 599 BIN02190

299 DTDX1=(TT(II2)-TI2)/(X (II2)-YI2)-.5*D2T2*(X(II2)-YI2) BIN02200
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FILE: BINCR6 FCRTRAN P1 G R U N n A N D A T A S I S T E F

DCDX1= (CC (II2) -CL2) /(X (II 2 ) -YI2) -. 5*D2C2*(X (I12) -YI2) BIN02210

599 UI=UE(TSI2) BIN02220

V1=VE (TSI2) BIN02230

HB1=-EE*SIG*(273.12+TSI2)**4-UI*GAMMAU*CSL2-V1*GAMiA*(1.-CSL2) BIN02240

DYDT1=Ul*EMU*CSL2/RHOU+V1*EMV*(1.-CSL2)/RHO J1N02250

DCDT1=DCDX1*DYDT1I-(U1-V1)*CSL
2  81N02260

DTDT1=DTDX1*DYDT1+HB1 BIN02270

IF (IFL.LT.2) GO TO 76 BIN02280

IF(IFS.GE.1)GO TO 174 BIN02290

IF(TSI2.GT.TT(II2)) GO TO 399 BIN02300

TT2=XCL (CSL2) BIN02310

IF(TSI2.GT.TT2) GO TO 174 BIN02320

IF (TSI2.GE.TT2-.05) GO TO 400 BIN02330

IF (D!LTS.LE.DELTK) GO TO 400 BIN02340
GO TO 399 BN 02350

76 YI=YI1+.5* (DYDTO+DYDT1) *DELTS BINi23bO

IF(IFS.EQ.0) ZI=YI BIN02370

TSI =TSI1+.5*(DTDT +DTDT1)*DELTS BIN02380

IF(TSI.LT.0.)TSI=TSI1 81N2390

CSL=CSL1+.5*(DCDTO+DCDT1) *DEL.TS BIN02400

IF (IFS.EQ.)) GO TO 73 BIN02410

IF(IIT.GT.5)GO TO 70 BIN02420

IF(TSI.GT.TT(II2).OR.TSI.GT.TI2) GO TO 70 BIN02430

73 IF(ABS(YI-YI2)-1.E-6*A$S1(YI+YI2))
7 4 , 7 4, 7 0 BIN0244C

74 IF(ABS(CSL-CSL2)-1.E-4*ABS1(CSL+CSL2))75,
7 5, 7 0 BIN02450

75 IF (ABS(TSI-TSI2)-1. E-5*ABS1(TSI*TSI2)) 7 , 7
,

7 0 BIN32460
701 TSI2=(TSI+TSI2)/2. BIN02470

IF (IFS.EQ.0 ) TI2=TSI2 BIN02480
YI2=(YI+YI2)/2. BIN02490

IF (IFS.EQ.0)ZI2=YI2 IN02500
CSL2= (CSL+CSL2)/2. SIN02510
IF(IFS.EQ.O0)CL2=CSL2 BIN02520

IF(ZI2.LT.(1.-S)*X(I2)+S*X(II2-1)) GO TO 24 BIN02530
22 IF(II1-II2) 24,96,96 BIN02540
96 II2=II2+1 BIN02550
46 D2C1=D2(ZI1,CL1,X(112 (112,C(II2),X(I12+1),C(112+1)) BIN02560

D2TI=D2(ZI1,TI1,X(II2),T(II2),X(II2+1),T(II2+1)) BIN02570
24 IF (IT-NITQ) 48,174,160 BIN02580

16" IF(IT-NITH) 48,47,48 BIN02590
47 IF(DELTS-DELTK) 48,U8,53 BIN02600
53 DELTS=DELTS/RAT BIN02610

152 IF(RAT-1.) 153,153,154 BIN02620
153 RAT=2.*RAT BIN02630

DELTS=DELTS/2. BIN02640
GO TO 152 zIN02b50

154 TIME1=TIME+DELTS BIN02660

212 DO 45 I=II3,IM BIN 02670

TT(I)=(TT(I)+(RAT-1.)*T (I))/RAT BIN02680
45 CC (I)= (CC (I)+(RAT-1.)*C(I)) /RAT BIN02690
148 RAT=1. BIN02700
48 IT=IT+1 BIN02710

IF(IT.EQ.NITH+1)GO TO 20 BIN02720

IF (IT-NITL) 161,174,161 BIN02730
161 IF(IT-NIT) 77,77,402 BIN02740
402 IF(DELTS.GT.DELTK) GO TO 399 BIN02750
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FILE: BINCR6 FORTRAN P1 G R U M M A N D A T A S Y S T E M

IPFL=2 IN02760

GO TO 77 uIN02770

26 IF (NONCN)99,48,48 BIN02780

7 IFL=IFL+1 BIN02790

DZDT1=DZDT t3IN02800

IF(IFS.NE.0)ZI2=ZI1+.5*DELTS*(DZDIO+DZDT1) BINO2810

TSI2=TSI BIN02820

YT2=YI 13IN 02830

IF(IFS.EQ.1) ZI2=YI2 BIN02840

CSL2=CSL BIN02850

IF (IFS.NE.0) TI2=TI 8IN0280b

IF (TI2.LT.TSI2) TI2=TSI2 BIN02870

IF (IFS.EQ.0) TI2=TSI2 kIN02880

IF(IFS.EQ.0) CL2=CSL2 BIN62890

GO TO 77 BIN02900

399 IF(DELTS.LE.DELTK) GO TO 26 dIN02910
IT= NITH 8IN02920

IFL=1 BIN02930

GO TO 153 BIN02940

117 IF(TIME.EQ.TIME1)TI E1=TIME1 +DELTS. BIN02950

TIME=TIME1 BING2960

IF (RAT.NE.2..AND.RAT.NE.0.) DELTS=DELTS/RAT BINU2970

RAT=1. 8IN02980

IF(IT-NITQ) 82,82,81 BIN02990

82 IF(DELTS.GT.DELT/2.) GO TC 81 BIN03000

DELTS=DELTS+DELTS bIN03010

RAT=2. BIN03020

81 TIME1=TIME1+DELTS BIN03030

282 D2C1=D2C2 BIN03040

D2C3=D2C4 81N0305u

D2C5=D2C6 BIN03060

D2T3=D2TU BIN03070

D2T1=D2T2 BIN03080

D2T5=D2T6 BIN03090

DYDTO= DYDT 1 BINO3100

DCDTg=DCDT1 BIN03110

U0=U1 BIN03120

VO=Vl BIN03130

DTSDX1=DTSDX BIN03140
DCSDX1=DCSDX BIN03150 ,,

IF(IFS.NE.0) DCDX0=DCDX1 BIN03160

IF (IFS. NE.0) DTDXg=DTDX1 BIN03170

IF(IFS.NE.0) DZDTO=DZDT1 BIN03180

CSL1=CSL2 BIN03190

TSIl=TSI2 BIN03200

YIl=YI2 BIN03210

ZI1=ZI2 I8N03220

IF(IFS.NE.O)CS1=CS2 BIN03230

HBO=HB1 BIN03240

CL1=CL2 BIN03250

TIl=TI2 BIN03260

IF(YI2.LT.X(II3))GO TO 410 BIN03270

113=II3+1 BIN03280

D2T5=D2(YI1,TSI,X(II3) ,TT(II3) ,X(I113+1) ,TT (II3+1)) BIN03290

D2C5=D2(YI1,CSL1,X (II3) ,CC (II3) ,X (I
3 +1),CC (II3 +1)) BIN03300
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FILE: BINCR6 FORTRAN P1 G R U M M A N D A T A S Y S T E 9

54 IF(IT-NIT) 98,98,U2 
BIN03860

34 IF(DELP.EQ.C.)GO TO 42 BIN03880
TPR=TPR+DELP BIN03880

42 WRITE(IO,10
0 ) IT,IM ,II1,112 ,II BIN03890

WRITE(IO,1 0 2 )TIME,YI1,CSL1,TSI1,U1,V,HB1,DYDT1,DTDT1,DCET1,DELTS 
BIN03900

IF(IFS.NE.0)WRITE(IO,102) ZI1,CS1,CL1,TI,DZDT1 BIN03910

143 WRITE(IO,1 0 2) (TT(I),I=II3,IM),(CC(I) ,I=II 3 ,I) BIN03920

12 FORMAT(5E14.6) 8IN0390

IF(TIME -TF) 98,99,99 BIN03940

98 DO 97 I=II3,IM BIN03950

TTT=TT (I) +RAT* (TT (I)-T (I)) BIN03960

T(I)=TT(I) BIN03980

TT(I)=TTT 8IN03990

97 CONTINUE IN003990
DO 197 I=II3,IM BIN04000

CCC=CC(I)+RAT* (CC(I)-C(I)) BIN04010

C (I) =CC (I) BIN04020

197 CC(I)=CCC BIN04030

IFL=1 BIN04040

GC TO 27 
BINU4050

4( CSS=FS(TI2) BIN04060

CLL=FL(TI2) BIN04070

DELZ= (CLL-CL2)/((CLL+CC(112)) -2.*CSS) (X ( I 12) - Y I 2) BIN04080

ZI2=fI2+DELZ 
BIN04090

DZDT=DELZ/DELTS 
BIN041O

DZDT1=DZDTO 
BIN04110

CL2=CLL 
BIN04120

CS2=CSS 
BIN04130

DCDX=0O. 
BIN 34140

PDTDX! =. BIN04160

WPITE (IO,1 0 3 )TIME1,YI2,TI2,ZI2,CS2,CL2,DELZ,DELTS,DZDTO 
BIN04170

1'3 FORMAT(' SOLIDIFICATION HAS BEGUN '/(5E14.6)) BIN04180

IFS=1 
BIN04190

GO TO 174 
BIN04200

99 RFAD(II, INVAR) BINU4210

IF(IX.GT.1)GO TO 999 BIN04220

STOP b1N04230

END 
31N04240
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APPENDIX II

GLOSSARY OF PROGRAM PARAMETERS

IX = maximum number of points in mesh, < 28

IAM = spacing option: 0 indicates equal, 1 unequal doubling

NIT = maximum iteration count

IM = number of points in mesh

NONCN = nonconvergence option: 1 indicates proceed and printout

0 indicates proceed but do not

printout

-1 indicates program stop

IT = actual iteration count

NITH = half of NIT

NITQ = quarter of NIT

NITL = 3/4 NIT

IFL = indicator of convergence: 2 on convergence,

< 2 before convergence

IFS = indicator of beginning of solidification: IFS = 0 before
solidification,

IFS > 0 after
solidification

III = grid point reference for solid side of mesh

112 = grid point reference for liquid side of mesh

113 = grid point reference for evaporation boundary

114 = grid point reference for point after evaporation boundary

III = grid point reference for point after solidification boundary

DELT = maximum time interval (step size)

DELTM = minimum time interval

DELTK = larger of quantities DELT/1024 and DELTM

DELTS = current time interval

TIME = time at beginning of time interval

TIME1 = time at end of time interval

DELP ime print interval BCEDEG

TPR = time for printing results

TF = final time
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YI, YII, YI2 = values of y (evaporation boundary)

ZII, ZI2 = values of z (solid-liquid boundary)

TI, TII, TII, TI2 = temperatures at solid-liquid boundary

TSI, TSIl, TSI2 = temperatures at evaporation boundary

CSL, CSL1, CSL2 = concentration at evaporation boundary

CSI, CS2 = concentration of solid at solid-liquid
boundary

CL1, CL2 = concentration of liquid at solid-liquid
boundary

dz
DZDT, DZDTT, DZDTO, DZDT1 =dt derivative of solid-liquid boundary

dy
DYDTO, DYOT1 - dt derivative of evaporation boundary

dTDTDTO, DTDTlI = derivative of temperature at evapo-ration boundary

dC
DCDTO, DCDT1 dT derivative of concentration at

evaporation boundary

DTDXO, DTDX1 =( partial derivative for tempera-
ture at evaporation boundary

T
DTSDX = s\a - z partial derivative of tempera-ture in solid at boundary

DTLDX = -X z partial derivative of tempera-
ture in liquid at boundary

DCDXO, DCDX1 = partial derivative of concentra-y tion at evaporation boundary

DCSDX = (\s-)z partial derivative of concentra-
tion in solid at solid-liquid
boundary

DCLDX = xz partial derivative of concentra-tion in liquid at solid-liquid
boundary
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2T
D2TI, D2T2 =--2) at liquid side of solid-liquid

6x z boundary

2

D2T3, D2T4 = at solid side of solid-liquid
bx z boundary

D2T5, D6T6 = ( 2T at evaporation boundary
6x y

2

D2Cl, D2C2 = (-~ ) at liquid side of solid-liquid
6x z boundary

2

D2C3, D2C4 = \)at liquid side of solid-liquid
6x- z boundary

2

D2C3, D2C4 = (-~-) at solid side of solid-liquid
6x z boundary

D2C5, D2C6 = (") at evaporation boundary
6x y

UO, Ul = rates of evaporation of solute

VO, VI = rates of evaporation of solvent

HBO, HB1 = heat balance sum of evaporation and
radiation terms

EMU, EMV = molecular weight of solute and solvent
atoms

RHOU, RHO = density of solute and solvent

GAMMAU, GAMMA = specific heats of solute and solvent

AU, BU, AV, BV, EK = evaporation constants for solute and
solvent

UE, VE = arithmetic function definition for
evaporation rates

ET, EA, EB, EC, ED = phase diagram constants

FS, FL = arithmetic functions for solidus and
liquidus curves
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AS, AL = temperature diffusion coefficients

ASS, ALS = squares of temperature diffusion
coefficients

XKS, XKL = ks , k2  for interphase boundary equa-
tion

DS, DL = mass (concentration) diffusion coeffi-
cient

EE, SIG = radiation constants E, a

TO, CO = initial temperature and concentration
distribution

COO = equals CO
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APPENDIX III

LIST OF SYMBOLS

A2  k /vc

As  ks /Pv

A ,B evaporating constants for solute

Av,Bv  evaporating constants for solvent

c specific heat, cal/g/°C

C solute concentration

CI solute concentration in liquid

C initial solute concentration in liquid

C solute concentration in solids

D density of solid, g/cm3

D density of liquid, g/cm 3

ET melting point of solvent, 'C

EA EB coefficients of solidus

EC,ED coefficients of liquidus

f liquidus equation

f solidus equation
-5

K constant in evaporation equations = 5.83 x 10
e

k thermal conductivity of liquid, cal/sq cm/cm/sec/OC

k thermal conductivity of solid, cal/sq cm/cm/sec/OC

M molecular weight of soluteu

M molecular weight of solvent
V
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S time constant

t time, second

T temperature, OC

Ti  temperature at solid-liquid interface, °C

TI temperature in liquid, oC

To  initial melt temperature, "C

Ts temperature in solid, or surface temperature, 0C

T1  surface temperature, oC

T2  final surface temperature, OC

U solute evaporating rate, mol/cm /sec

V solvent evaporating rate, mol/cm2/sec

v position and temperature-dependent variable

x distance.from initial melt surface, cm

y distance at phase change boundary, cm

y rate of movement of phase change boundary, cm/sec

z distance at phase change boundary, cm

a constant

E emissivity coefficient

p density, g/cm 3

Sdensity of solute, g/cm 3

p density of solvent, g/cm3

l latent heat of fusion, cal/g

Yu latent heat of fusion, or specific heat. of solute,
cal/g or cal/g/oC

TV latent heat of fusion, or specific heat,of solvent,
cal/g or cal/g/oC

a Stefan-Boltzmann constant = 1.35 x 10-6
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